Source Water Assessment and Protection Plans (SWAPP): Aquilogic staff has developed SWAPPs that consider the threat that releases of contaminants may pose to water resources. A SWAPP may also define management actions to minimize or mitigate the threat.

Water Quality Monitoring: Water quality is monitored on a regular basis to identify impacts to that resource and threats to a water supply. Aquilogic staff has implemented water quality monitoring programs for groundwater, flood control systems, streams and rivers, wetlands, lakes, and marine environments.

Contaminant Hydrogeology: Aquilogic staff has worked on some of the most complex groundwater contamination issues in the nation, including recalcitrant chemicals such as fuel oxygenates, solvents, rocket propellants, soil fumigants, and hexavalent chromium. Further information can be found in our Groundwater Contamination Brochure.

Drinking Water Treatment: In some cases, water supplies need to be treated to reduce naturally occurring compounds or remove man-made chemicals. Water treatment options are evaluated as part of a feasibility study (FS). Whatever treatment is selected, the design and permitting process is rigorous, given that the treated water will be used for public supply. Aquilogic staff has experience preparing engineering designs, permit applications, tender documents, and installation and performance reports for drinking water treatment systems.

Water Re-use and Conjunctive Use: Storm water and treated water from a wastewater treatment plant are usually discharged to a surface water body. Increasingly, this discharge is being used for irrigation, direct potable reuse (DPR) or, more often, indirect potable re-use (IDPR) using ASR. With increasing water supply demands and declining supplies, a conjunctive use program can be used to optimize yields allowing excess water to be transferred from one user (e.g. agriculture) to another (e.g. domestic supply). Aquilogic staff has experience supporting the design, installation and operation of ASR systems, and working with multiple stakeholders to develop conjunctive use plans.

Geomatics and GIS: Aquilogic has Geomatics staff capable of developing databases and Geographic Information System (GIS) platforms for water resources projects that allow for the rapid generation of tables, graphs, and maps.

aquilogic

environment • water • strategy

Other Services

Groundwater Contamination Responsible Party Identification

Remedial Investigation Contaminant Hydrogeology Fate & Transport Modeling Risk Assessment Remediation Feasibility Studies Soil & Groundwater Remediation Environmental Permitting Facility Decommissioning NRDA

Strategic Solutions

Litigation Support Expert Witness Forensic Engineering Environmental Risk Management Stakeholder/Public Participation Regulatory Strategy Environmental Cost-Benefit Analysis Public Relations Support

www.aquilogic.com info@aquilogic.com +1.714.770.8040

nvironmen

Groundwater Management Water Resources Assessment

Water Resources Assessment Water Balance & Safe Yield Groundwater Modeling Groundwater Development Contaminant Hydrogeology Source Water Assessment Water Re-use & Conjunctive Use Aquifer Storage & Recovery Drinking Water Treatment GIS & Geomatics With increasing demand for limited water supplies, each drop of water must be protected, restored, developed, treated, used, re-used, and managed effectively. Without water, there is no agriculture, no power, no industry, no economic growth, and no prosperity. At aquilogic, we offer a range of services focusing on the management, protection, restoration, development, and re-use of this finite resource. Whether it's protecting a groundwater resource, removing industrial contaminants, or re-using water to enhance supplies, we have the capability and experience needed to address the water challenges facing society. Some of the services we offer are described in this brochure. More detailed information on these services, along with descriptions of current and completed projects, can be found at our website: www.aquilogic.com

Water Resources Assessment: The location, yield, seasonal variation, and guality of water resources need to be assessed prior to the development for domestic. agricultural, or industrial use. Aquilogic staff has conducted water resources or source water assessment for new water supplies, optimization of existing supplies, or enhancement of existing supplies.

Water Balance and Safe Yield: A water balance analysis defines and quantifies all water inputs and outputs to a given area, plus the volume of water in storage and any additional storage capacity. The safe yield is the volume of water that can be withdrawn on an annual basis without any net change in storage. Aquilogic staff has developed water budgets and safe yield estimates for groundwater basins, sub-basins, and defined areas within a basin.

Hydrological System Modeling: Hydrologic models are often developed to simulate complex natural systems. Hydrologic models can evaluate the physical movement of water, the chemical character of the water, and/or the transport of sediments or solutes. Aquilogic staff has developed a variety of hydrologic models to assess, manage, develop, and restore complex hydrologic system.

Groundwater Resource Development: Aquilogic staff has overseen the installation of water supply wells in a variety of geologic settings, and secured appropriate regulatory approvals. We have also supported the implementation of aguifer enhancement programs, such as recharge basins, percolation wetlands, and treated water reinjection programs for aguifer storage and recovery (ASR) and saline intrusion barriers.

water in any language

ujë ماء onth

tubig

auga

νερό

પાણી

dlo

מים

नी

viz vatn

air

eau

Water Volume Conversion

su	Unit	GPM	GPD	GPY	CFD	CFY	CMD	СМҮ	AFY
ura	GPM	1	1,440	525,600	192	70,080	6.207	2,266	1.609
вады জল	GPD	1,440	1	365	0.133	48.667	0.004	1.573	0.001117
води	GPY	525,600	365	1	48.667	0.133	1.573	0.004	0.000003
aigua	CFD	192	0.133	48.667	1	365	0.032	11.801	0.000023
水	CFY	70,080	48.667	0.133	365	1	0.000	0.032	0.008379
voda	CMD	6.207	0.004	1.573	0.032	0.000	1	365	0.000001
vand	СМҮ	2,266	1.573	0.004	11.801	0.032	365	1	0.000271
water vesi	AFY	1.609	0.001117	0.000003	0.000023	0.008379	0.000001	0.000271	1

Volume of Soil per foot of Boring Depth

წყალი	Diameter (in)	2	4	6	8	10	12	16	20	24	30	36
wasser	Volume (ft ³)	0.022	0.087	0.196	0.349	0.545	0.785	1.396	2.182	3.142	4.909	7.069

Volume of Water per foot of Casing

Diameter (in)	1	2	3	4	6	8	10	12	16	20	24
Volume (gal)	0.041	0.164	0.368	0.655	1.473	2.618	4.091	5.891	10.472	16.363	23.562

Typical Soil Properties

uisce acqua	Soil Type	porosity	effective porosity	•	hydraulic conductivity (range)		
水 ನೇರು		%	%	ft/year	ft/year		
3(0)	Clay	50	2	0.01	10		
ūdens	Sandy Clay	40	8	0.1	100		
vanduo	Silt	40	8	10	1,000		
вода ilma	Sandy Silt	35	15	100	1,000		
van	Silty Sand	30	18	1,000	10,000		
آب .	Sand	25	22	1,000	100,000		
woda água	Gravel	20	19	10,000	1,000,000		

de apă Useful US to SI Conversion Factors

воды												
vode	convert from	to	multiply by	convert from	to	multiply by						
agu 	in	m	0.0254	lb (mass)	kg	0.4536						
maji vatten	ft	m	0.3048	lb (force)	Ν	4.4482						
క్ర ణాణోగ్ర నీరు	in ²	mm ²	645.16	in Hg	atmosphere	0.0334						
	ft²	m²	0.0929	in Hg	in H ² O	13.2						
Ń€) پانی	acre	ft²	43,560	lb/in ²	atmosphere	0.06805						
nước	ft ³	m³	0.028317	cm ² /sec	in²/yr	4,881,000						
dŵr	quart	liter	0.9464	ft/lb (energy)	joule	1.3558						
װאַסער	gallon	m³	0.003785	g/cm ³	lb/ft ³	62.4279						

Darcy's Law

Q = I	K·i·A
-------	-------

Where

Q = volumetric discharge across area (A)

- K = hydraulic conductivity
- i = hydraulic gradient

Groundwater Velocity

$v = K \cdot i/n_{o}$

Where $n_{o} = effective porosity$